Project 21: Wall Of Sound

Preliminary Design Review

VADER

Vectorized Acoustic Deterrence of Elephants Research

Team Members: Arpad Voros, Greyson Fitts, Hunter Cook, Morgan Pyrtle, Nwaf Alamro

Sponsors: Army Research Office: Paul Reid, Stephen Lee

Mentors: Dr. Pitts, Dr. Gupta, Dr. Schiefele

Project Background

Problem: Elephants in Sub-Saharan Africa impede on crops of farmers, frequently leading to loss in annual yield & livelihood, dangerous human-elephant conflict, and fatality of both parties.

Solution: Create a passive deterrence system which inhibits elephants from trespassing onto farmland.

Impact: Reduces the number of casualties on both sides, humans and elephants.

Project Scope

Key Requirements

- Frequency ranges to broadcast: 10Hz 20kHz
- Deter elephants with a passive, safe acoustic system
- Does not require direct user attention to operate
- Does not enrage the elephant or cause it bodily harm.
- Does not harm people when active.

Key Constraints

- Terrain and vegetation
- Differences in weather patterns
- Actively working vs. detection based
- Curious animals/angry elephants destroying the device
- High frequencies known to upset animal

System Design

Design Decisions

Primary ultrasonic beam -- Linear Pha: Ultrasonic Secondary audible waves array of virtual sound sources sound source - Parabolic L - Parametric Array

System Concept Design

Aimable/Configurable Parametric Speaker w/ Microphone to catch sound reflections

NC STATE UNIVERSITY

Installation • User Physical Set-Up OFF NO YES Toggle Maintenance Clean the device Required? Power Configurate Settings ON Device Continuous Idle State YES NO Automated? → Manual **Continuous Active State** Device Idle State Active State Enter Low Idle State Active State Exit Low Set-Up Power Mode Set-Up Power Mode **Begin Deterring** → Wait for Target Yellow Flashing Green LED LED Indicator Indicator Observe FOV Listen to Activate Speakers Infrasound with Camera YES NO Target NO Target YES Deterred? In Range?

User Operation Flowchart

Detailed Subsystem Concept Diagram

NC STATE UNIVERSITY

Motor Controller Flowchart

Microphone Flowchart

Software Architecture for Testbench

Analog Modulation Techniques

DSB-AM DAC audio to the second secon

Speaker Flowchart

Prototype Motor Controller Trade-Offs

Motor Controller	PWM Motor Speed Controller 6V - 60V Variable Speed/Forward and Reverse Switch Pulse Width Modulation DC Speed Regulation	Cytron 20Amp Bi-Directional 6V-30V DC Motor Driver Speed Controller 60A Peak	PN00218-CYT14 Motor Driver 2 Channels 30Amp 7V-35V DC SmartDriveDou MDDS30	
Cost	\$14.99	\$19.80	\$65.00	
Voltage Range	6V - 60V	6V-30V	7V-35V	
MCU Compatible?	No	Yes	Yes	
Ease of Use	High	Medium	Low	

Microphone Trade-Offs

Microphones	Geophone - SM-24	ICS-40300	Presonus	
Cost	\$59.95	\$2.80	\$100	
Frequency Response	10Hz - 240Hz	6 Hz - 20.0 kHz	20Hz - 20kHz	
Software	C (code exists)	InvenSense own software	Commercial software (e.g. MLSSA)	
Ease of Use	Needs soldering/basic components	Needs soldering/basic components	Commercial product	
Size	1 x 1.5 inches	0.186 x 0.148 inches	7.5 x <1 inches	

Microcontroller Trade-Offs

MCU	Arduino Uno	Freedom KL25z w/ Shield	TI MSP430	
Cost	\$22	\$15	\$10	
Memory	32 Kb	128 Kb + MicroSD on Shield	8kb	
Processing Power Max Clock Speed	16 mHz	48 mHz	16 mHz	
Power Usage (LPM - Max)	45mA - 80mA	Very Low* - 22.56mA	Very Low* - 40mA	
Experience/Ease of Use	None	High	Moderately High	

Analog Multiplier Trade-Offs

Device	AD633	MPY634 Ad hoc Multiplier		Modulate Digitally
Cost	\$6	\$12 Cheap		Free
Feasibility	Very Easy	Very Easy	Very Easy Time Consuming	
Power Usage	Less	Less	More	Least
Latency	Low	Low	Med	High
Results	Slightly sub-ideal	Slightly sub-ideal	Ideal	Non-ideal

Speaker Trade-Offs

Device	KS-4140A	D33A16	RT16mm40kHz	MSO-AT1640H12R
Cost	\$0.38 per + expensive shipping	\$1.50 per + negotiable shipping	\$0.33 per + decent shipping	\$0.30 - \$0.80 per + low shipping
Frequency Range	35kHz - 45kHz	39.2kHz - 40.8kHz	39kHz - 41kHz	39kHz - 41kHz
Transmittance	>90 dB	114 dB	>115 dB	>115 dB

Simulation

Acoustic Simulation

- Using various MATLAB packages to simulate ultrasonic non-linear effects
 - <u>K-Wave</u>
 - Primary, general case
 - Numerical analysis of 2-3D wave equation
 - <u>ULTRASIM</u>
 - Specialized to ultrasonic acoustics, ultrasonic imaging, and transducer design
 - <u>FOCUS</u>
 - Specialized for continuous transient ultrasound, varying media (non-linearity)

Acoustic Simulation

Run Section Advance	Run and Time				
20 t.m					
uakeDisc					
c_x_pos,	disc_y_pos,	disc_radi	ius);		
c_x_pos,	disc_y_pos,	disc_radi	ius);		

Analog Modulation Simulation

- Using LTSpice to simulate different parts
- Ideal to simulate prior to material purchasing

Analog Modulation Simulation

Analog Modulation Simulation

Project Plan

Plans for Prototype

- Signal mixing technique fully functional with speaker array
- Operational LED Indicators
- Speaker array configuration determined for near ideal "Wall"
- Field implementation determined (multiple vs. single unit)
- Fully ready for testing on an elephant

Roles and Responsibilities

Arpad:

- Technical: Simulation (MATLAB, LTSpice), MCU Programming, PCB Design, Signal Mixing, Modeling
- Admin: Website Manager, Part Selection

Greyson:

- Technical: Motor Controller Programming/Directionality
- Admin: Part Purchasing

Hunter:

- Technical: MCU Programming, Testbench Design, Procedure
- Admin: Sponsor Contact, Meeting Scheduler

Morgan:

- Technical: Mechanical Assembly, Simulation (MATLAB)
- Admin: Meeting Minutes

Nwaf:

- Technical: PCB Design, Signal Mixing, Mechanical Assembly
- Admin: Part selection

NC STATE UNIVERSITY

2020 Timeline *Subject to change

	Oct. Wk3	Wk4	Nov. Wk1	Wk2	Wk3	Wk4
Group	PDR		Testbench Assembly (TA)	TA, Collect Data	Debug/ Testing	Decide Availability
Deadlines	PDR				Design Day	
Arpad	Acoustic Simulation (AS), Part Selection, CAD, LTSpice Simulations	AS, PCB Design, MCU Programming	AS, MCU Programming, PCB Design & Purchase, Set-Up and Assembly	Set-Up and Assembly, Debug Phase	Debug Phase	Adjustments & Improvements
Greyson	Order Parts	MCU Programming	MCU Programming			
Hunter		MCU Programming	3D Print Necessary Materials	Work with testbench/ Improve data collection	Compile data in meaningful way	
Morgan		Acoustic Simulation	Testbench Assembly; Acoustic Simulation	Testbench Assembly		
Nwaf	Test Methods	PCB Design	PCB Design & Purchase	Work with testbench		Adjustments & Improvements

Cost Analysis for Testbench

Device	10-16mm 40khz transducer	ICS-40300	Geophone	Analog Multiplier - AD633	Frequency Generator - AD9833
Cost	\$175.00	\$12.00	\$59.95	\$19.20	\$19.40

Excel purchasing form:

https://docs.google.com/spreadsheets/d/1BVZyShNdetvotFz QIGQ5tDb_D-vviOZ-A75umamQiTI/edit?usp=sharing

Testbench - CAD Model

- 420 mm in diameter (roughly 16.5 inches)
- 331 16mm diameter ultrasonic transducers in parallel
- Mockup product will be more rectangular, vertical
- Will first test spatial resolution and efficacy of directionality and attenuation with this, then improve upon

Mockup Product Demo

- User Operation:
 - Easy installation and set up
 - Audio file selection
 - System should simply toggle between on and off
 - LED indicators will tell the user the state of the system
- User Experience:
 - Less worry about crop destruction or loss of life
- Look & Feel:
 - Light, easily transportable
 - 'Blend' in with nature, birdhouse, etc.
- Placement:
 - To be determined from testbench
 - Multiple units might be required

Questions?

Which Wall of Sound Team Is Better?

- Team VADER

How are we utilizing the testbench?

- Sound intensity and microphone location will be gathered to develop a sound map
- Cylindrical coordinates to measure amplitude and THD
- Adjusting parameters of the test bench should let us see how the sound map changes in shape and effectiveness as a Wall of Sound
- Radiation Pattern

NC STATE UNIVERSITY

https://images.google.com/