
Project 3: ECE 763
1st Arpad Voros

Electrical and Computer Engineering
North Carolina State University

Raleigh NC, USA
aavoros@ncsu.edu

2nd Bryce Abbott
Mechanical and Aerospace Engineering

North Carolina State University
Raleigh NC, USA
tbabbott@ncsu.edu

3rd Jonathan Service
Electrical and Computer Engineering

North Carolina State University
Raleigh NC, USA
jmservic@ncsu.edu

Abstract—This paper presents a deep learning model for face
detection. The babysitting method was implemented to optimize
the regulation and learning rate for the model with a coarse
and fine search. Face data was cherry-picked, imported, and
preprocessed to improve performance. The simple LeNet-5 archi-
tecture was selected as the initial network structure, but a hand-
crafted network was also implemented that provided improved
accuracy. It was found that the babysitting process enabled a
higher accuracy to be achieved compared to simply choosing
common hyper-parameter values. This paper also discusses the
effect of dropout on overfitting and accuracy.

Index Terms—CNN, computer vision, facial recognition

I. METHODOLOGY

To create the deep learning model for face detection, the
Keras API (built on Python’s TensorFlow 2.0) was used in
the Google Colab environment. Cropped face and non-face
images used in Project 1 & 2 were reused for this project
using the FDDB dataset. These images are 3-channel RGB
at a resolution of 20× 20 pixels. Image sets were stored in a
single array with size B×H×W×C, where B is the number of
batches, H is the image height, W is the image width, and C is
the number of channels (or colors). Images were downscaled
by 255 to get a floating point value for each datapoint (pixel),
and preprocessed to make the set more comparable. The data
labels were one-hot encoded, using a set of binary variables
to support more than two categories if desired.

A. Architecture

A simple LeNet-5 convolutional neural network architecture
was selected for its simplicity and wide use in image recog-
nition. The structure of this model is shown in Table I.

TABLE I: Model Training Metrics

Layer (type) Output Shape Param #
Conv2D (None, 20, 20, 6) 456
Dropout (None, 20, 20, 6) 0

AvgPooling (None, 10, 10, 6) 0
Conv2D (None, 6, 6, 16) 2416
Dropout (None, 6, 6, 16) 0

AvgPooling (None, 3, 3, 6) 0
Flatten (None, 144) 0
Dense (None, 120) 17400

Dropout (None, 120) 0
Dense (None, 84) 10164

Dropout (None, 84) 0
Dense (None, 2) 170

This architecture will be the target discussion of the paper.

II. DATA PRE-PROCESSING

Differences in image parameters like lighting and contrast
could negatively affect the training and test accuracy, so the
images were then zero-centered and normalized to provide a
more comparable data set [1]. To zero-center the data, the
mean with respect to the number of images was subtracted
from the pixel value of each image for each channel. For
normalization, the resulting array was divided by the stan-
dard deviation with respect to the number of images. These
operations reduce the amount of variation due to contrast and
intensity changes, which enables reliable comparison between
features for repeatable detection. In addition, the images were
allowed to be rotated up to 20 degrees, and horizontal and
vertical flips were randomly applied to some of the training
images for robustness.

III. BABYSITTING THE LEARNING PROCESS

A. Hyperparameter Optimization

The babysitting process enabled optimization through the
control of network hyperparameters, which influence loss
and the resulting accuracy. After building the model, initial
efforts were spent to determine reasonable learning rates
and regularization values, while performing sanity checks to
validate the model. First, the model was run to check if the
initial loss was reasonable. Then, with a small regularization
(L1 and L2) value (10-6), a learning rate was found that
made the loss decrease without exploding. It was concluded
that a learning rate between 10-3 and 10-6, and a L1 & L2
regularization between 10-5 and 105 should provide the best
results. To determine the optimal hyperparameters, a coarse
and fine search were used sequentially.

1) Coarse Search: For the coarse search, temporary values
for regularization and learning rate were selected uniformly
at random and tested for a total of 100 trials. The helped to
narrow down the search to a learning rate between 10-4 and
10-3, and a regularization between 10-5 and 10-3. A summary
of the coarse search results is shown in Fig. 5 with influential
learning rates and regularization values are enclosed by red
rectangles.



2) Fine Search: For the fine search, the narrower bounds
were used with the same uniform random sampling. With a
total of 100 trials, it was found that a learning rate of 9.4×10-4

and a regularization of 7×10-4 provided the highest accuracy.
These values will be used for the following implementation
and results. A summary of the fine search results is shown in
Fig. 6 with influential learning rates and regularization values
are enclosed by red rectangles.

IV. MODEL IMPLEMENTATION AND RESULTS

The LeNet-5 network was trained with 3000 of both face
and non-face training images. The results at each step of the
convolution network are shown for an example face image in
Table V [2]. It should be noted, that these visuals show all
convolutional, pooling, and drop out layers. After these steps,
the model is fed through multiple dense layers (which are not
visualized). One interesting observation that was made was the
visual of the last layer looks similar between the three positive
images, whereas the two negative images have significantly
different distributions.

Figure 1 shows the training progress over time. The model
trained on pre-processed images (referenced in II) provided
a 93.59% final training accuracy and a 96.88% validation
accuracy after 25 epochs.

Fig. 1: LeNet-5 architecture trained on pre-processed data

A. Effect of pre-processing

Figure 2 shows the training progress over time without pre-
processing. The model only provided a 92.88% final training

accuracy and a 93.23% validation accuracy, which is 3.68%
lower than that with pre-processing. This shows how helpful
pre-processing is for success.

Fig. 2: Training History Without pre-processing

It should be noted that due to the naturally small size of
this LeNet-5 (∼32,000 parameters), the training and validation
accuracy is more sporadic as small changes during parameter
updating in back-propagation affects the entire model at a
greater ratio than a model with more parameters. Nevertheless,
these results for both models trained on nonpre-processed
and pre-processed data, respectively, are incredibly good and
efficient considering how small the model is.

B. Effect of dropout

Dropout is a regularization technique where randomly se-
lected neurons are ignored during training. This means that
other neurons will have to handle the representation required to
make predictions for the missing neurons. This gives neurons
less opportunity to develop weights that are highly specific
to noise in the training data, and the network becomes less
sensitive to the specific weights of the neurons. This reduces
the likelihood of over-fitting, and creates a more generalized
model with a goal of achieving a higher validation accuracy.

To determine the best dropout rate (with a rate of 1
being all neurons ignored and 0 being all neurons used), the
validation accuracy for a sweep of rates were studied. The
accuracy corresponding to dropout rates tried in increments
of 0.1 are shown in Fig. 3. The dropout had a positive effect
on the validation accuracy at low rates. At higher dropout



rates, however, validation accuracy decreased due to fewer
neurons being available. A dropout rate of 0.4 was the most
effective and provided an additional 1% validation accuracy.
This improvement in fitting to the test data supports the idea
that dropout can reduce over-fitting to training data, especially
for models with small amounts of training data.

Fig. 3: Effect of Dropout Rate on Validation Accuracy

V. EVALUATION

There were two LeNet-5 models trained, as well as another
model introduced in section VI-A. The following table shows
the binary accuracy of each model on pre-processed data,
given by different datasets produced by each author.

TABLE II: Binary Accuracy

Model Name
Test Dataset LeNet-5 1 LeNet-5 2 Other Arch

Abbott 0.9450 0.9025 0.9550
Service 0.8800 0.9150 0.8800
Voros 0.9308 0.9110 0.9374

TABLE III: Total Loss

Model Name
Test Dataset LeNet-5 1 LeNet-5 2 Other Arch

Abbott 0.1365 0.3154 0.2302
Service 0.3036 0.3194 0.3546
Voros 0.1859 0.2979 0.2701

On all three datasets provided by each author, the differ-
ent models seem to be performing well, with the minimum
accuracy showing being only 88%.

VI. FUTURE IMPROVEMENTS

There is still a lot of room for improvement when it comes
to tackling the problem of facial recognition. Different deep
learning architectures [3], signal processing techniques, and
classical machine learning approaches are being implemented
on the daily to continually improve the robustness, accuracy,
and training time of these models.

A. New Architecture

Our group decided to get inspiration from [4] to try a model
with the following repeating convolutional steps

TABLE IV: Model Training Metrics

Layer (type)
Conv2D

BatchNorm
Activation

MaxPooling
ZeroPadding
∧∧ x3 ∧∧

Flatten
Dense

Dropout
Dense

Dropout
Dense

This model did not take a long time to run, as our training
images are only 20 × 20 × 3. However, the trade-off we
experienced with this different architecture was a gain in ac-
curacy with an increase in model size. The model had over ∼8
million parameters (compared to the ∼32,000 of LeNet), but
experienced a 98.29% training accuracy and 96.35% validation
accuracy (4.70% and -0.53% increase respectively from first
LeNet-5 model) after only 15 epochs of training. The training
history is seen in Fig. 4

Fig. 4: Other architecture trained on data

It was observed that an increase in the number of parameters
results in a more consistent, less sporadic curve for both
training and validation accuracy.



VII. APPENDIX

Fig. 5: Summarized Coarse Search Results

Fig. 6: Summarized Fine Search Results



TABLE V: Three positive and two negative image being passed through the LeNet-5 model

Face evaluation
0.9985031 0.9994142 0.9529020 0.0003845 0.0003776



REFERENCES

[1] S. Prince, Computer Vision: Models Learning and Inference. Cambridge
University Press, 2012.

[2] G. Pierobon, “Visualizing intermediate activation in convolutional neural
networks with keras,” 2018.

[3] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly wired
neural networks for image recognition,” 2019.

[4] X. Bracquart, “Face recognition with keras,” 2020.


