
ECE 558 Project 3 Arpad Voros

1 Blob detection

Blob detection is a precursor used in a scale-invariant feature transform (SIFT), where the
locations and strengths of interest points within an image are detected. If the strength of the
interest point is scaled according to which frequency it corresponds to (i.e. lower frequencies
result in larger blobs, higher frequencies with smaller blobs), then a blob-like feature can be
extracted.

It should be noted that I am working individually, and I am competing for the
speed/run-time competition.

2 Algorithm

MATLAB was used to implement the algorithm.

1. Calculate Laplacian ’pyramid’ of image

(a) Pyramid is in quotation marks above, because unlike a traditional pyramid that
is downsampled at each layer, downsampling is an unnecessary step in the blob-
detection algorithm.

(b) The Gaussians are calculated using two functions, gaus2dmesh() and gaus2dcrop().
For rectangular images where the ratio between the maximum and minimum dimen-
sions is greater than ∼4.75, gaus2dmesh() is used. Otherwise, gaus2dcrop is used.
The value of ∼4.75 was calculated using by running run-time tests on both functions
and comparing the results. A pattern was noticed, where this dimension ratio was
the indicating factor for optimizing the calculation of the 2-dimensional Gaussian by
selecting one method over another.

i. gaus2dcrop() - Calculates the 1-dimensional Gaussian distribution given the
variance and image dimensions. The maximum dimension is used for the length
of the 1-dimensional Gaussian. This result is vector-multiplied with itself to
create a matrix ∈ Rdimmax×dimmax . Then, the matrix is cropped to the size of
the minimum dimension along the minimum dimension of the input image.

ii. gaus2dmesh() - Calculates the 2-dimensional Gaussian distribution given the
variance and image dimensions, using the commonly-used built-in MATLAB
function meshgrid()

(c) The Gaussian blurs are applied by convoluting the Gaussian with a greyscale version
of the input image. This is more easily done in the frequency domain, so a 2-
dimensional DFT is applied to each Gaussian as well as the greyscale input image.
After element-wise multiplication, a 2-dimensional IDFT is used to return to the
spatial domain.

(d) Since a Laplacian can be approximated by taking the difference of two Gaussian
distributions, then the original image is blurred using subsequently large Gaussian
distributions and stored.

It is necessary to note that this is only possible with a constant scaling of the standard
deviation of the Gaussian. So,

Laplacian ≈ G(kn+1σ)−G(knσ), n ∈ [0,number of layers− 1]

where k is traditionally approximately
√
2

1



ECE 558 Project 3 Arpad Voros

The number of layers are calculated the following way

i. Lower bound - An arbitrary minimum blob diameter is calculated, so that only
σ < σmin remain in the potential standard deviations in the ’pyramid’ calcula-
tion.

ii. Upper bound - An arbitrary upper bound is calculated using a logarithmic re-
lationship of the minimum dimension of the input image. This naturally results
in a potential maximum blob-size that, if centered, will fit into the image along
the smaller dimension.

(e) The difference of each adjacent Gaussian layer is what is used for the Laplacian
approximation. This can be seen on the left side of Figure 1.

Each layer of the resulting Laplacian corresponds to 2-dimensional edge detection from
a fine to coarse accuracy. If an blob-like feature is of the appropriate size, then the
surrounding edges constructively build up to a peak, rather than simply magnifying the
edge and falling into a depression toward the middle of the feature. Therefore, this peak
(whether it be minimum or maximum) can be extracted and utilized as a SIFT interest
point.

2. Calculate the local extrema of the Laplacian

(a) The traditional algorithm used to find local extrema would be to take the magni-
tude of each Laplacian layer and compare each pixel to its neighbors (extending
the dimensions along the ’pyramid’ layers, so one pixel would neighbor 26 others in
a 3-dimensional space). If this pixel’s magnitude is the largest, then it is a local
extrema and saved as a SIFT interest point.

(b) The näıve implementation would be to sweep across each Laplacian layer with a
3× 3× 3 cube, and determine whether the magnitude of the center is the maximum
of the 27 points within the local group. However, this was too slow for my liking.

Instead, there was an effort made in finding a faster method. The idea of downsam-
pling and upsampling using nearest-neighbor interpolation seemed very promising,
as only 1 pixel (in possible 9 pixel positions of a 3 × 3 grid) would be used for
comparisons of local maxima.

i. A function called sepblockfun() (all credits to author are within sepblock-
fun.m) was utilized to split up an N-D array into the expected kernel size of
3 × 3 to perform localized operations (the operation implemented being max-
imum). However, this returned a downsized version of the input, which could
not be compared to the upsampled image. This proved beneficial w.r.t compu-
tational efficiency, since there was no need to upsample the image in the first
place.

ii. A 4-dimensional array is preallocated and to fit the 2-dimensions of the Lapla-
cians, the number of Laplacian layers, and each pixel for a 3× 3 grid. For each
pixel within the 3×3 grid, the local maximum is calculated using sepblockfun()

iii. Then, 3 layers (selected along the layer dimension of the 4-dimensional array
above) undergo a maximum operation to flatten into a resulting 3-dimensional
array. The Laplacian is sampled periodically along each image dimension for
all pixels ∈ 9 possible pixel positions and compared directly to the maximum
pixel value in the corresponding pixel-dimension of the 3-dimensional array. If
the Laplacian pixel equals the localized maximum, then it is the localized maxi-
mum. Logical element-wise matrix multiplication is used to keep the maximum

2



ECE 558 Project 3 Arpad Voros

magnitudes of the Laplacian for each Laplacian layer, while all other pixel values
default to 0. This can be seen on the right side of Figure 1.

3. Apply threshold to local extrema to calculate SIFT interest point

An arbitrary pixel magnitude threshold is selected to filter through the strongest, most
prominent SIFT candidates. From experimentation, this value typically ranges from 10-
50 in production of decent results. The lower the threshold, the more points are passed
through, displaying more blobs. Subsequently, larger thresholds result in less blobs. The
coordinates of each SIFT interest point are stored along the layer dimension.

4. Display the image with blobs

For each layer, a quantized circle diameter is determined proportional to the standard
deviation for that corresponding layer. Meaning, SIFT points in a layer are displayed
with equal circle diameters regardless of their original magnitude. In MATLAB, the
RGB input image is displayed and overlayed with circular figure objects.

Figure 1: Laplacian on left, localized extrema on right. Layers 1 & 4. (Zoom in to see extrema)

3



ECE 558 Project 3 Arpad Voros

3 Results

Figure 2: Some output images (cropped to square)

4



ECE 558 Project 3 Arpad Voros

Figure 3: More output images (cropped to square)

5



ECE 558 Project 3 Arpad Voros

Figure 4: Showcasing scale and shift-invariant properties of blob detector

6



ECE 558 Project 3 Arpad Voros

Figure 5: Precursor to SIFT image recognition, reverse transformation, image stitching, etc.

Figure 6: Run-time of large (2000× 2000) image, showing output prompt.

7



ECE 558 Project 3 Arpad Voros

3.1 Timing

Timing was performed using the built-in MATLAB functions tic and toc. Timing was per-
formed around steps 1 through 3 in the Algorithm section. Time to display the image and blobs
was NOT concluded, since this is purely dependent on how fast MATLAB can display a figure
with other figure objects (the circles). Timing was only done on steps 1 through 3 because this
is where all necessary calculations are made for the blob detection algorithm.

Many trials were run for each image. Some more than others, so this is meant to be a rough
estimate to gauge the programs efficiency.

Image Dimensions Threshold Average time (s) Time per pixel (µs)
Figure 2 - - - -
cameraman 200× 200 22 0.075 1.875
peppers 256× 256 17 0.150 2.289
airplane 256× 256 20 0.150 2.289
space 821× 900 12 1.990 2.693

Figure 3 - - - -
einstein 480× 640 21 0.632 2.057

sunflowers 357× 328 20 0.295 2.519
fishes 335× 500 15.5 0.418 2.496
politics 1214× 1800 16 5.125 2.345

Figure 4 - - - -
butterfly d100 100× 100 32 0.022 2.200
butterfly d200 200× 200 32 0.067 1.675
butterfly d300 300× 300 33 0.165 1.833
butterfly vert 544× 544 33 0.620 2.095
butterfly horz 544× 544 33 0.620 2.095
butterfly angl 664× 664 32 1.220 2.767
Figure 5 - - - -
bazilika1 416× 340 16 0.350 2.475
bazilika2 600× 450 18 0.570 2.111
Figure 6 - - - -

butterfly d2000 2000× 2000 40 6.900 1.725

Table 1: Timing results of the figures above

The tests were run on MATLAB 2021b, 64-bit Windows 10, Intel(R) Core(TM) i5-7200U
CPU @ 2.50GHz 2.71 GHz, 8.00 GB (7.86 GB usable) RAM

8



ECE 558 Project 3 Arpad Voros

4 Instructions to run

1. Open aavoros_project03.m in MATLAB

2. Before running

(a) Change the FILEPATH variable to the path of the input image on Line 2.

(b) (Optional) - Change the layer_scale variable on Line 13. This is roughly
√
2, so

can be anything from 1.3 - 1.6, but should typically be unchanged

(c) Change the THRESHOLD variable on Line 21 to determine what threshold to filter
SIFT candidate points.

(d) Change the LINECOLOR and LINEWIDTH variables on Lines 27 & 28. All possible
colors can be seen in the rectangle function documentation.

3. Running

(a) Press the ’Run’ button to run all

(b) If a different THRESHOLD, LINECOLOR, or LINEWIDTH need to be specified, only ’Run
Section’ on the coordinate extraction & display section of the script (Line 18 onward)

9


