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Abstract—This paper presents a deep learning model that
processes images of crop fields to assess their health status with
the key objective of identifying which areas of the fields have
been damaged. Image data of crop fields was downsampled due
and used as the training data, employing semantic segmentation
methods to define ’damaged’ and ’not damaged’ sections of the
input images. Mean IOU was the key metric used to determine
the performance of the deep learning model and enabled an easy
comparison of these models. This paper also discusses future
work that could further enhance the results such as the current
model structure sticking at local minima.

Index Terms—CNN, computer vision, semantic segmentation,
classification, agriculture, crop damage

I. METHODOLOGY

Crop images were provided for the training of our models;
however, these images required a fair amount of pre-processing
before they could be loaded into our deep learning models. The
Colab Environment used in this project has a maximum RAM
allocation and with the full-size images being 3-channel RGB
at a resolution of 3456×4608 pixels, it required that the images
be downsized. Fortunately, this pre-processing step allowed for
faster training of the models as a result of the smaller image
size. The images were initially downsized in MATLAB before
being imported into the Colab Environment and the following
sizes were considered:

Resolution (%) Resolution (px)
2.5% 96 × 128
5.0% 176 × 240
5.3% 192 × 256

10.0% 352 × 464
20.0% 704 × 928

The downsampling process was not ideal as the U-Net
architecture [1] used in this project requires the pixels along
each axis to be divisible by 2N , where N is the number of
down/upsampling stages. The model we employed used N = 4
[2], thus each dimension was required to be a factor of 16
and this was accomplished using Eq. 1, where size is a 2×1
matrix of height and width, sizedown is a 2×1 matrix of the
downsampled height and width, and scale is the % of scale
factor selected from the table above.

sizedown = 2N
⌈

size× scale
2N

⌉
(1)

Another key consideration in the data was that three
train/annotation pairs were unable to be considered due to poor
image quality that resulted in too much blur or high exposure
that produced near-white blank images. With all of the images
edited in MATLAB, they were imported into Colab where the
following process was employed:

1) Training images were downscaled by 255 to get a
floating point value for each datapoint (pixel)

2) Annotations/Labels were downscaled by 255 in a similar
process as step 1, and averaged along all three channels

3) Annotations/Labels were reshaped to (height, width, 1)
since the channels were averaged to 1-channel from
point-of-view of the data

4) Floating point values were finally rounded to 0 or 1,
generating a simple binary mask

This procedure allows the training images to retain their
image characteristics while applying this binary mask. The
purpose behind the implementation of a binary mask is due
to the structure of the data: crop segments are determined as
either damaged (1) or not damaged (0). This was fed into a
U-net architecture [1] with the structure shown in Fig. 1.

Fig. 1: Model Structure of U-Net [1]

The training metrics for this model structure are defined in
Table 1.

Three evaluation metrics were employed as binary accuracy
provided good insights for the training stage, mean IOU was
used for the testing stage, and standard accuracy metrics was a
decent metric for both. The structure used consists of blocks as
follows: b1 = convolution→ dropout and b2 = convolution→



TABLE I: Model Training Metrics

Parameter Value
Epochs 20

Binary Accuracy
Evaluation Accuracy

Mean IOU
Optimizer Adam

Loss Function Cross-Entropy

max pooling. These two blocks were alternated N times before
the layers were concatenated at the end.

II. MODEL IMPLEMENTATION AND RESULTS

The following Fig. 2 shows the initial image of the crop
field and the processed image used for training the model.
The white bars indicate areas of the crops that are damaged
while the black components are the undamaged crop fields.

(a) Image of Crop Field before processing (b) Processed Image used as training input

Fig. 2: Images for Model Training

Training the aforementioned model for the specified twenty
epochs yielded impressive results for the binary accuracy. In
this metric, the binary training accuracy was 96.37% with a
test accuracy of 92.3%; however, comparing this with the mean
IOU indicated performance along this metric was not that
impressive. For mean IOU, the training accuracy was 47%
and testing accuracy was 43%. Attempts to achieve a greater
accuracy with this metric did not yield positive results, with all
of the resultant attempts have sub-50% accuracy. The standard
accuracy metric, in this regard, does not matter as the binary
accuracy metric is significantly better with respect to model
performance. Fig. 3 below shows an example output prediction
from the trained model.

The white pixels in Fig. 3 indicate sections of the image that
were classified as damaged, while the black indicate otherwise.
Comparing this image to Fig. 2b shows that the model
employed does not do an effective job at fully categorizing
the segments that are determined to be damaged. This issue
with the model was found to be due to the Convolutional
Structure dropping the horizontal features of the image while
retaining the vertical features, which meant that model began
mistaking horizontal damage for vertical damage. This was
further compounded in the concatenation stage of the model
which led to a much greater emphasis on vertical shape as

Fig. 3: Sample Image for Damage Prediction

opposed to the horizontal shape. This can be seen in Fig. 4
and Fig. 5 which compares the image at the layer before the
convolution and how it looks after [3].

Fig. 4: Convolutional Layer with Horizontal Features

Fig. 5: Convolutional Layer without Horizontal Features

The difference between these two figures is obvious as Fig.
4 still has remnants of the crop field in its structure while Fig.
5, in some cases, produces a blank image by removing those
features. This leads to the development of the prediction seen
in Fig. 3 that is heavily dominated by the thin line of crop
damage, which is identifiable in Fig. 2a. The reason for this
will be discussed in the following Evaluation section.



III. EVALUATION

As discussed in the previous section, there were a few key
issues from the model trained for this project. The model’s
convolutional network resulted in the loss of horizontal fea-
tures in the prediction stage. This key limitation is suspected to
be do the network reaching a sticking point at a local minima
that preferentially filters for vertical features in the crop field.
This is also seen when rotations are applied to the data as
shown in Fig. 6.

Fig. 6: Rotated Crop Images

Fig. 6 demonstrates rotational angles of the crop field. This
figure demonstrates the bias of the model toward vertical
features in the structures. As the image of the crop field
becomes more vertical, the accuracy of the prediction increases
substantially, with the last image capturing almost all of the
damaged crop segments.

A. Future Work

Future work will need to address the key issue of bias in the
prediction due to the erasure of the horizontal features. One
way this can be achieved is through the generation of data that
includes more horizontal patches of damaged cropland. Ideally
this step alone would improve the accuracy of the model, as it
would not require specific orientations of the images to fully
capture the extent of the damage.

Further research could be conducted into the design of
architectures that suite the semantic segmentation required
classification of crop damage. In our implementation, the
U-net provided promising results but was limited by the
filtering of the CNN layers. A more in-depth analysis into
other viable structures could lead to the development of more
accurate results. Furthermore, optimization of the model hyper
parameters could have received more consideration in this
project.
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[2] K. Åmdal Sævik, “U-net image segmentation in keras,” 2018.
[3] G. Pierobon, “Visualizing intermediate activation in convolutional neural

networks with keras,” 2018.


